Two friends are on the coordinate axis Ox in points with integer coordinates. One of them is in the point x1 = a, another one is in the point x2 = b.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1 + 2 + 3 = 6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
The first line contains a single integer a (1 ≤ a ≤ 1000) — the initial position of the first friend.
The second line contains a single integer b (1 ≤ b ≤ 1000) — the initial position of the second friend.
It is guaranteed that a ≠ b.
Print the minimum possible total tiredness if the friends meet in the same point.
3 4
1
101 99
2
5 10
9 找到中间数用求和公式算一下就行了
#include#include #include #include #include #include #include #include #include #include #include